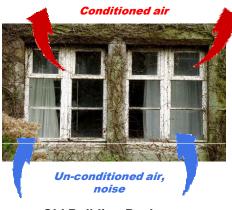
euroregister

Aldes ME Flash

N°45 – September 2012

Technical Information


How to design an extract ventilation system?

What is ventilation?

Ventilation of any premises can be defined as "the process to replace the stale / polluted air with fresh / clean air in order to **improve Indoor Air Quality (IAQ) and comfort** for the people using that premises".

Why to ventilate?

Most of us *spend around 90% of our time inside buildings* (e.g. homes, offices, schools, gyms, shopping malls, restaurants etc.) therefore, the quality of air that we inhale plays a vital role on our health, efficiency and mood.

Old Building Designs:

 \rightarrow No proper insulation

 \rightarrow Not enough air tightness

- \rightarrow High level of energy consumption
- (for cooling as well as heating)

 Modern Building Designs:

 → Adequate insulation

 → Good air tightness

 → Reduced energy consumption in general (as compared to past designs)

 → Need for arrangements to remove

different pollutions from buildings.

Pets...

Chemicals...

The first step in the sustainability pace is to work on the **envelope of the building to ensure an efficient** building **insulation, air tightness and shade.** This will lead to great **energy savings by reducing the cooling/heating load** (low heat transfer and low air leakage), but it will also increase the need for an efficient ventilation system bringing outdoor air to **cure and improve the IAQ.** Indeed, all pollutants trapped inside buildings will have to be removed effectively for better IAQ.

Different types of pollutants inside buildings:

Aldes ME Flash

Radon

Control the balance between IAQ and energy consumption

Ventilation of the whole house / building

Aldes ME Flash

<u> C</u>ontinuous <u>M</u>echanical <u>E</u>xtract <u>V</u>entilation (CMEV)

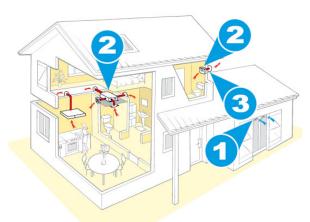
In order to effectively remove all pollutants (VOCs, CO2, smells, allergens etc.) that are trapped inside building, a <u>Continuous Mechanical Extract Ventilation system</u> is the best solution to guarantee proper IAQ & comfort.

Absence of an adequate CMEV system with "correct" air flow rates will generate more and more **health issues** in particular for the most fragile (children, seniors). Some disorders from **building-related illnesses to sick building syndromes lead also to increased employee sick** days and **reduced work efficiency and productivity.**

The passage of air : From least polluted rooms towards most polluted rooms

Types of CMEV

1- Self Balanced CMEV → Constant airflow


→ A controlled « constant airflow » goes through the whole house (individual family or multi-family) independent of the occupancy.

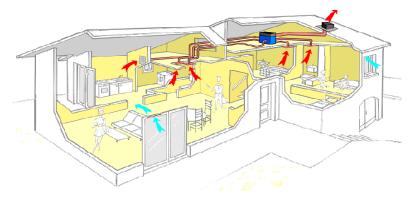
2- Humidity Control CMEV → Modulated airflow as per need

 \rightarrow A controlled « variable airflow » goes through the whole house (individual family or multi-family) depending on the humidity content that changes with occupancy.

Split Self-balanced CMEV

- Electronic air flow rate control
- Split system for an easier installation (simpler ductwork)
- Constant airflow rate

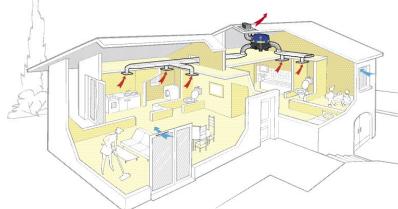
1 – Inlets in principal room


2 – Two types of fans (constant airflow), single or multiple connections for single or multiple technical rooms

3 – Outside grilles for exhaust

Aldes ME Flash

Centralized Self-balanced CMEV


- Centralized system for an easier installation for new building \rightarrow only 1 fan
- Air flow control with self-balanced products on each connection of casing
- Constant airflow rate

- 1 Inlets in principal room
- 2 Outlets in technical rooms
- $\mathbf{3}$ One type of fan (constant airflow) with multi connections
- 4 Outside grilles for exhaust

Centralized Humidity-controlled CMEV

- Air flow control with humidity controlled systems (inlet and outlet)
- Airflow as per the need i.e. reduced when unoccupied / increased when occupied
- Low power consumption

1 – Inlet with RH detection and valve changing airflow rate

2 – Outlet with RH detection and valve changing airflow rate

3 – One type of fans (variable airflow) with multi-connections

4 – Outside grilles for exhaust

Self-balanced CMEV Vs Humidity-controlled CMEV

	Split Self-balanced CMEV	Centralized Self-balanced CMEV	Centralized Humidity-cont CMEV
IAQ	Whole room	Whole room	Whole room
Comfort	*	*	**
Airflow	Constant	Constant	Modulated
Energy consumption	*	*	***

euroregister

Aldes ME Flash

Design criteria for an adequate CMEV system

Normal habits in the GCC about extract airflow \rightarrow High airflows

- Toilets: 25-90cfm (50 to 150m³/h)
- Kitchen: 120-150cfm (200 to 250m³/h)

Consequence:

- Good in terms of IAQ
 - Bad in terms of energy consumption
- To **limit energy consumption** (without compromising IAQ), minimum airflow rates as defined in \rightarrow various international standards should be used.

Example 1: ASHRAE 62.2 Std for single-family houses and multi-family structures of no more than 3 stories

(e.g. villas)

	TABLE 5.	2
Continuous	Local Ventilation	Exhaust Airflow rates
Application	Airflow	Notes
Kitchen	5 ach	Based on kitchen volume
Bathroom	20 cfm (34m3/h)	

Example 2: ASHRAE 62.1 Std for all spaces except those covered by ASHRAE 62.2 Std

	TABLE 6-4 Minimum Exhaust Rates			
Occupancy Category	Exhaust Rate, cfm/unit	Exhaust Rate, cfm/ft ²	Notes	
dential kitchens	50/100		G	<u>Note:</u> • 25 cfm = 45 m3/h
ets private	25/50		Е	• 50 cfm = 85 m3/h • 70 cfm = 120 m3/h
ilets public	50/70		D	•100 cfm = 170 m3/h

D Rate is per water closet and/or urinal. Provide the higher rate where periods of heavy use are expected to occur, e.g., toilets in theatres, schools, and sports facilities. The lower rate may be used otherwise.

E Rate is for a toilet room intended to be occupied by one person at a time. For continuous system operation during normal hours of use, the lower rate may be used. Otherwise use the higher rate.

See other applicable standards for exhaust rate. F

G For continuous system operation, the lower rate may be used. Otherwise use the higher rate.

Aldes ME offers several products suitable for Self-balanced and Humidity-controlled CMEV systems. For further information or enquiry, please contact us! www.aldes.ae

