

Aldes ME Flash

N°30 – September 2011

Technical Information

How to select a sound attenuator?

Introduction

Noise is defined as any **unwanted sound** perceived by the hearing sense of a human being. Excessive noise can impair hearing and may also put stress on the heart, the circulatory system, and other parts of the body. Worker exposure to excessive noise over an extended period may result in a permanent loss of hearing. The introduction of a noise source into a given environment can be potentially hazardous, as well as objectionable to nearby tenants and residents – depending on its sound level.

Every situation in noise control involves a system composed of three basic elements: **Source, Path** and **Receiver**. Before a solution to a complex noise problem can be designed, **the dominant source of the noise must be known**, the characteristics of the **significant transmission path must be understood**, and **acceptable noise level must be available**.

Sound power (Lw) and Sound Pressure (Lp)

aldes air&people

Sound attenuators

In ventilation systems, noise stems from a variety of components such as the fans or the fire dampers. To comply with a **specified noise level**, **sound attenuators** are installed at suitable locations in the ventilation system. The sound attenuators should have adequate silencing capabilities, low air resistance and be as small as possible.

Type of sound attenuators

<u>Rectangular</u>

- \rightarrow for attenuation of noise propagating through rectangular ducts.
- Straight case
- Vertical & Horizontal bend type

<u>Circular</u>

- \rightarrow for attenuation of noise propagating through circular ducts.
- -Without central pod
- With central pod

Cross Talk

 \rightarrow to prevent transfer of noise between adjacent spaces.

Insertion Loss (dB)

Insertion loss of a sound attenuator is the difference between the noise levels measured **before** and **after** the insertion of a sound attenuator.

Procedure to calculate required insertion loss & select a sound attenuator

System layout with different elements

Ref	Туре	W	н	Length/Type
1	Duct	700	600	2 m
2	Bend	700	600	Radiussed
3	Duct	700	600	12 m
4	Bend	700	600	Radiussed
5	Duct	700	600	5 m
6	Outlet	3-slots	diffuser	1200 mm long

Sound power of fan (manufacturer's data)

Fan	type:	Centrif	ugal					
Duty	/: 2.5 i	m³∕s						
Sou	nd pov	wer lev	el at m	id frequ	uency	octav	e ban	ds
Hz	63	125	250	500	1k	2k	4k	8k
dB	85	90	86	91	87	87	80	72

Aldes ME Flash

Critical room details

Room volume: 300 m³Room height: 3 mOutlet: 3 slot diffuser 1200 mm long each slot diffuser handles 0.4 m³/s

Critical room noise criterion

Office Area : NC 35 @ 1.5m from the noise outlet

Procedure in Aldes sound attenuators calculation & selection software

Calculating Sound Power Level (SWL) leaving system

- Enter the sound power level and airflow of the noise source (fan) in the selection software.
- Identify the critical outlet, trace-out the path from source to the critical outlet in critical
- room and enter the sizes & lengths of ducts, branches, elbows etc.
- Enter the size of the critical outlet.

2 Calculating Direct Sound Pressure Level (SPL)

- Enter the airflow coming out of the critical outlet.
- Enter the distance from critical outlet to the listener.
- Select the position of the critical outlet (Directivity) as per below table.

Table 7 : Directively factors, dB

Type B	Junction of two room surface					Octave centre	Ty	/pe C	on	Centre of one room surface					
Outlet area, cm ²					in Hz		Outlet area, cm ²								
10	10 100 1000 10000					10	10 100 1000 10						0000		
	+6 +7 +8		+8	63		+3				+4	+	5 +6	+7		
	+6 +7 +8		+8	125		+3 +4			+4	+5	+6	+7	+8		
	+6 +7 +8 +9		+9	250		+3		+4 +	5	+6	+7	+8	+9		
+6	+6 +7 +8 +9			500	+3	3 +4	+5	+6	Γ	+7	+8 +9				
	+7 +8 +9		1k	+4	+5	+6	+7	+	8	+9					
	+7 +8 +9			2k	+5	+6	+7	+8			+9				
+7 +8 +9			4k	+7	7	+8	в		+9						
+8 +9				8k		+	8	+9							

3 Calculating Reverberant Sound Pressure Level (SPL)

- Enter the total airflow in the critical room.
- Enter the concerned room dimensions (Area & Height)
- Select the appropriate reverberation time as per below table.

Aldes ME Flash

Calculating Combined Sound Pressure Level (SPL)

It is the sum of Direct SPL and Reverberant SPL by decibel addition as per below given table.

Table 11: Addition of Sound Pressure Levels, dB

Differences in SPLs	Add to Larger SPL
0,1	+3
2,3	+2
4,5,6,7,8,9	+1
10+	+0

5 Required Insertion Loss

- Select the required Room Criterion e.g. NC 35.
- Required insertion losses are calculated automatically by deducting Room Criterion from Combined SPL.

6 Selection of Sound Attenuator

- Select the attenuator type suffix e.g. standard, bend horizontal, bend vertical, ...
- Select the attenuator material e.g. standard, SS 304, SS 316, ...
- Enter the maximum acceptable pressure drop.
- Enter the maximum airflow through the sound attenuator.
- Selection is done by clicking on Insert Calculated Loss tab.

- Select the optimum length & pressure of the attenuator by manipulating in between different width and height combinations to get required insertion loss.

aldes air&people

Aldes ME Flash

Aldes sound attenuators Calculation & Selection software

Screen shot

Aldes Middle East Sound Attenuators Selection Software										Print		
Date 1/1/2009 Customer ALDES		-		Octave Center Frequency								
Project EXAMPLE Tupe SA20	oject EXAMPLE			Total Air Flow (M ³ /s) 2.5 63 125 250 500						2K	4K	8K
System FAN-1-S		Source Sound Pow		85	90	86	90	87	86	80	72	
Small Duct Dimensions (mm)	600 350	Length (m)	7 12	-	4.2 7.2	4.2	2.1 5.4	1.05 3.6	1.05 2.4	1.05 2.4	1.05 2.4	1.05 2.4
Radiussed Elbow Widths (mm)	Qty.	1 2 1	-			1 2	2 4 1	3 6 2	3 6 3	3 6 3	3 6 3	
Additional Attenuation			-									
Outlet Reflection [Length (cm)]	120	Width (cm)	8	-	11	7	3	1				
SWL Leaving System					63	72	73	77	73	71	65	57
Percentage Leaving Outlet (M ³ /e) Distance from outlet to listener (m)	0 195	8%		- - _	11 15 7	11 15 7	11 15 8	11 15 8	11 15 8	11 15 0	11 15 9	11 15 0
Direct SPL	I		<u> </u>		44	53	55	59	55	54	48	40
Percentage Reaching Room (M ³ /s) Room Volume [Length X Width (m ²)]	1.17 100	47% Height (m)	3	-	3 -11	3 -11	3 -11	3 -11	3 -11	3 -11	3 -11	3 -11
Reverberation Time		1Second 💽	·)	+ 	49	58	50	63	59	57	51	43
Combined SPL					50	59	60	64	60	59	53	45
Criterion NC / NR / dBA Add db As Safety Factor		NC35]		60	52	45	40	36	34	33	32
Required Insertion Losses						1	15	24	24	25	20	13
Sound Attenuator Selection Insertion Loss	ction	Insert Calculated Loss				7	15	24	24	25	20	13
Attenuator Type Suffix Attenuator Material O:Standard						tion C Press Length	C riteri ure Droj	a				
Evase tail												
Max.Acceptable Pressure drop (Pa) Attenuator Air Flow (M ³ /s)				Attenu	ator L	ength	(mm)			12	00	
Attenuator Height (mm) Attenuator Width (mm)	700				Pressu	ure dro	op (Pa))			5	8

Aldes Middle East

Sound Attenuator Selection Attenuator Air Flow 2.5 M3/s Attenuator Pressure drop 58 Pa

SA / O / 20 - 150 / 1200L X 700W X 600H

	63	125	250	500	1K	2K	4K	8K			
Required Insertion Losses dB		7	15	24	24	25	20	13			
Selected Insertion Losses dB	7	11	18	31	42	33	23	19			
Air Generated Sound Power Level	52	51	49	47	43	39	32	22			

Octave Center Frequ